Palladium-microencapsulated graphite as the negative electrode in Li-ion cells

نویسندگان

  • Ping Yu
  • Bala S. Haran
  • James A. Ritter
  • Ralph E. White
  • Branko N. Popov
چکیده

A Pd-encapsulated graphite electrode was used as the negative electrode in Li-ion cells. Through dispersion of ultrafine nanoparticles of palladium on the surface of graphite, the interfacial properties of the carbon surface were modified. The presence of the palladium Ž . dramatically reduces the initial irreversible capacity of the graphite in propylene carbonate PC -based electrolyte. Palladium suppresses the solvated lithium ion intercalation and improves the charge–discharge performance and initial coulombic efficiency of graphite. For example, 10-wt.% of Pd-nanoparticles dispersed on the surface of graphite increases the initial charge–discharge coulombic efficiency Ž . from 59% to 80.3%. Electrochemical impedance spectroscopy EIS indicates that palladium dispersed on graphite increases the ohmic conductivity and also improves the Li insertion rate into graphite. However, an excess amount of palladium on graphite leads to a decrease in the charge–discharge efficiency due to the consumption of lithium by the formation of Li PdO . q 2000 Elsevier Science 2 2 S.A. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ni-Composite Microencapsulated Graphite as the Negative Electrode in Lithium-Ion Batteries I. Initial Irreversible Capacity Study

A novel approach for suppressing the solvated lithium intercalation in graphite was developed by microencapsulating graphite with nanosized Ni-composite particles. The Ni-composite graphite showed great improvement in charge-discharge performance, coulomb efficiency, and cycling behavior when used as the negative electrode in a Li-ion cell with propylene carbonate (PC)-based electrolyte. For ex...

متن کامل

Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery

This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structur...

متن کامل

Ni-Composite Microencapsulated Graphite as the Negative Electrode in Lithium-Ion Batteries II. Electrochemical Impedance and Self-Discharge Studies

Electrochemical impedance and self-discharge studies were carried out to investigate lithium intercalation into bare and Ni-coated KS10 graphite. Values of the charge-transfer resistances, exchange current densities, surface film resistances, and lithium-ion diffusion coefficients as functions of the state of charge (SOC) all favored the 10 wt % Ni composite KS10 graphite over bare KS10 graphit...

متن کامل

Determination of Cobalt(II) by a New PVC Membrane Coated Graphite Electrode Based on 6-chloro-11- azabenzo[a]phenothiazin-5-one as a neutral ion carrier

Cobalt has great biological effects on human beings and also other living organisms, hence its determination is very important. In this regard, a novel coated graphite electrode was designed for determination of Co2+ ions by exploiting 6-chloro-11- azabenzo[a]phenothiazin-5-one as a neutral ion carrier, for the first time. The foremost function was witnessed from the membrane composition of PVC...

متن کامل

Determination of Mn2+ in Pharmaceutical Supplements by a Novel Coated Graphite Electrode Based on Zolpidem as a Neutral Ion Carrier

Manganese plays a key role in the health of human beings therefore, its determination is very important in medical fields. In this regards, a novel coated graphite electrode was constructed for determination of manganese (II) by using zolpidem as an ionophore, for the first time. The best performance was obtained of the membrane composition of PVC (32%), Potassium tetrakis (4-chlorophenyl) bora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000